Call analysis with classification using speech and non-speech features

نویسندگان

  • Yun-Cheng Ju
  • Ye-Yi Wang
  • Alex Acero
چکیده

This paper reports our recent development of a highly reliable call analysis technique that makes novel use of automatic speech recognition (ASR), speech utterance classification and non-speech features. The main ideas include the use the NGram filler model to improve the ASR accuracy on important words in a message, and the integration of recognized utterance with non-speech features such as utterance length, and the use of utterance classification technique to interpret the message and extract additional information. Experimental evaluation shows that the use of the utterance length, recognized text, and the classifier’s confidence measure reduces the classification error rate to 2.5% of the test sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phoneme Classification Using Temporal Tracking of Speech Clusters in Spectro-temporal Domain

This article presents a new feature extraction technique based on the temporal tracking of clusters in spectro-temporal features space. In the proposed method, auditory cortical outputs were clustered. The attributes of speech clusters were extracted as secondary features. However, the shape and position of speech clusters change during the time. The clusters temporally tracked and temporal tra...

متن کامل

Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms

One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...

متن کامل

Classification of emotional speech using spectral pattern features

Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...

متن کامل

Voice-based Age and Gender Recognition using Training Generative Sparse Model

Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...

متن کامل

مقایسه تأثیر درمان مبتنی بر آموزش تولید با آموزش حرکات دهانی غیر گفتاری بر گفتارکودکان 6-4 ساله ی مبتلا به اختلال واجی

Objective: speech sound disorders are among the most common speech disorders in children. Non-speech oral motor exercises have long been used as a facilitative activity throughout therapy sessions for a wide variety of speech disorders by speech-language pathologists. But there are few empirical controlled data to evaluate its effectiveness. This study aimed at comparing the effects of therapeu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006